Small Pressurized Rover for Independent Transportation and Exploration

Introduction

- Launch to moon on single Delta-IV Heavy
- Land anywhere on the lunar surface and assist a base with its exploration of the surrounding 100 km
- Allow in-situ maintenance and servicing for indefinite operational lifetime
- Fuel cell powered
- Robot arm allows interaction with local environment and exterior SPRITE systems

University of Maryland RASC-AL Competition Cocoa Beach, FL May 2005

SPRITE Capabilities

- Supports 2 crew members in a pressurized cabin for a nominal sortie length of 7 days
- Five 8-hour EVAs per sortie
- Collect 100 kg of lunar samples per sortie for return to base
- Following a worst-case failure, crew will return to base using the ERV, a small, deployable unpressurized

rover

University of Maryland RASC-AL Competition Cocoa Beach, FL May 2005

- Cylinder with 2 ellipsoidal end caps
- Ti6Al4V, 4 mm thick skin
- Total Mass (including ribs and stringers) = 505 kg
- Skin and MLI provide sufficient protection from radiation and micrometeoroids
- All stringers have hollow circular cross sections
- Supports mass of vehicle during launch ~ 3500 kg
- Analyzed using FEM
 - constrained at top rib
 - 6 g axial, 2.5 g lateral load applied lower rib

to

Component	OD (m)	ID (m)	Length (m)	Mass	Design Load	MOS	SF	Failure Mode
Stringer	0.055	0.054	2.88	12 kg	450 MPa	0	2	Compression
Rib/stiffener	0.155	0.141	7.85	58 kg	450 MPa	0	2	Bending
Skin (4 mm)	2.508	2.500	N/A	201 kg	550 MPa	0	2	Local Buckling
Front End cap	2.508	2.500	0.9	135 Kg	550 MPa	0	2	Local Buckling
Rear End cap	2.508	2.500	0.5	98 Kg	550 MPa	0	2	Local Buckling
Total Mass				504 Kg				
University of Maryland								

University of Maryland

RASC-AL Competition Cocoa Beach, FL May 2005

Pressurized Mating Hatch

- Provides shirtsleeve transfer of astronauts and supplies from SPRITE to base or to another SPRITE vehicle
- Inflatable membrane constrained by a titanium pantograph structure and Kevlar chords
- Transferables supported by a collapsible carbon/epoxy plank structure stowed inside SPRITE
- Contact is made by an androgynous resilient metal seal adapter

Membrane: 4.75 mm thick; Nomex T418 pressure bladder; 20 layers; 380 micron aluminized mylar; Teflon PTFE fabric abrasion layer

University of Maryland

RASC-AL Competition Cocoa Beach, FL May 2005

Exterior Suits

- 2 rear entry EVA suits will be mounted similar to NASA Ames Suitport concept
- Exterior suits reduce dust infiltration
- No airlock needed
- Docking device mass is 27 kg
- Only the suit interior opens to the cabin
- Docking device operable by suited astronaut
- Protected from dust exposure and micrometeoroids by collapsible Kevlar shield

http://ails.arc.nasa.gov/Images/TechXfer/AC96-0195-21.html

University of Maryland RASC-AL Competition Cocoa Beach, FL May 2005

Atmosphere and Crew Consumables

- SPRITE atmosphere:
 - Total Pressure = 8.3 psi
 - 37% Oxygen, 63% Nitrogen
- Transfers to and from base and suits require no pre-breathe period
 - Base: 14.7 psi total, 21% O₂, 79% N₂
 - EVA suits: 3.5 psi total, 100% O₂

Consumables required for one 7 day sortie + 3 days emergency

	Mass (kg)	For	Storage			
Oxygen	23	Atmosphere	cell oxygen tank boil- off			
Nitrogen	1	Atmosphere	Small interior tank			
Water	250	brinking, food hydration, hygiene, EVA	Interior tank below floor panels			
Food	40	Eating	Freeze-dried			
	University of Maryland					

Atmospheric Control

- Regulators will meter out gas from O₂ and N₂ tanks as needed
- CO₂ removal performed by LiOH canisters (40 kg required per mission)
- High Efficiency Particulate Arrestance filter removes contaminants
- In case of fire, cabin is flooded with 10 kg of CO₂, crew uses O₂ masks

Waste Management

- Expect 9 kg of trash
 - Dry trash stored in cans lined with bags
 - Wet trash stored in sealable plastic bags
- Toilet and solid waste storage system mass = 112 kg
- Liquid waste from galley and urine stored in tank under cabin floor

University of Maryland RASC-AL Competition Cocoa Beach, FL May 2005

Interior Layout

RASC-AL Competition Cocoa Beach, FL May 2005

Driving Station

• Viewing distance = 51 cm

- Elevated floor = 60 cm
- 95th male sitting eye level = 135 cm
- Driver sees 65 cm in front of rover
- Window = 96 cm

 Multi-paneled, multi-function display (MFD, 4) = 60 cm

• System stats, auxiliary camera views (nav. and obs.), robotic arm views, geographic survey

• Primary navigation display = 69 cm

• Data navigation display (2) = 50 cm

- Steering system
- Feedback loop, 2-DOF joystick
- Robotic arm, 7-DOF
- 2 3 DOF joystick w/ toggle
- Passenger : MFD (2) = 87 cm

University of Maryland

RASC-AL Competition Cocoa Beach, FL May 2005

RASC-AL Competition Cocoa Beach, FL May 2005

<image>

- Chassis supports weight of SPRITE during launch and driving operations
- Suspension system allows for clearance of 0.5 m obstacle
- Material: Titanium alloy
- Total mass = 550 kg

- Rim and hub design protects the motors
 - Width = 0.3 m Diameter = 1.2 m
 - Material: Aluminum-2024-T4
- Tire
 - Woven mesh of zinc-coated piano wire
 - Increases traction
 - Absorbs impact load
- Mass = 38.3 kg per wheel

University of Maryland

RASC-AL Competition Cocoa Beach, FL May 2005

Drive System Overview

Driving Requirements

Per Wheel	Peak	Continuous
POWER*	4.48 kW	1.42 kW
TORQUE*	775 Nm	163 Nm
Power to TOW**	3.72 kW	1.76 kW
Torque to TOW**	1285 Nm	305 Nm

*- @ a speed of 15 km/hr to drive 5000 kg

**- @ a speed of 5 km/hr to drive 8000 kg

Danaher motion, Direct Drive DC Torque Motors Catalog

Driving Motor Specifications

- Direct Drive, High Torque Motors inside the wheel
- Capabilities: 7 kW Peak Power, 1300 Nm Peak Torque
- Volume: 25 cm Outer Diameter, 13 cm Inner Diameter x 9 cm in Length
- Mass: 24 kg per motor

University of Maryland

RASC-AL Competition Cocoa Beach, FL May 2005

Steering and Braking

Braking

Braking Distance	4 m
Time to Stop	0.96 s
Comfortable Braking Rate	4.34 m/s ²
Coefficient of Friction*	0.65
Force to Brake	1017 N

* - rated at 120 °C for kinetic friction

- Dynamic and Regenerative Braking
- Carbon-Carbon Disc Brake with lightweight, high temperature tolerance; Specific gravity of 1.78
 - 2.85 cm thick x 20 cm radius
- 4-phase Regenerative braking via DC Motors
 - brings to 5 km/hr over gradual period, used in 80-90% of all instances of braking
 - transmits heat of braking to surface panels

Turning and Steering

Turning Radius	9.5 m
Minimum Wheel Angle	15°
Vertical Center of Gravity	1.52 m
Force Delivered to Wheel	490 N
Power per Wheel per Turn**	105 W

** @ 10.5 km/hr with a 6 cm actuator stroke length

University of Maryland RASC-AL Competition Cocoa Beach, FL May 2005

Power Budget and Production

Energy budgeted 10 days for crew systems and 7 days for all other systems

	Ρο	wer	Ene	ergy
	Estimated (kW)	Budgeted (kW)	Estimated (kW-hr)	Budgeted (kW-hr)
Nominal Driving	5.4	5.9	116	148
Peak Driving	18.0	20.0	31	38
Avionics	1.1	1.2	188	206
Crew Systems	2.3	2.6	519	618
Robot Arm	1.0	1.0	40	50.0
SPRITE	22	25	894	1060

- Proton Exchange Membrane fuel cell
- 34 Volts, 800 Amps
- Efficiency: 54 %
- Reactants stored in exterior cryogenic tanks
- Water produced stored internally beneath cabin floor
- Stack Mass: 29 kg
- 60 kg H₂, 475 kg O₂ used per sortie

University of Maryland

RASC-AL Competition Cocoa Beach, FL May 2005

Thermal Control Systems

- Passive
 - Insulation
 - Multi-layer insulation
 - 20 layers of 380 aluminized Mylar
 - Interior Cooling
 - Heat Pipes used to cool avionic
 - Copper/Water pipes used with a screen wick
 - Passive radiator to dump heat from heat pipes
 - Area: 1.3 m²
 - Mass: 110 kg

Active

- Heat Exchanger
 - Water is pumped through the pipes at 0.3 kg/s
 - Required pump power: 15 W
 - Air is circulated over the pipes
 - Pipes made of aluminum
 - Area: 2.5 m³
 - Maximum heat dissipated: 1000 W
 - Mass: 18 kg
- Radiator
 - Made of aluminum
 - Area: 1.5 m³
 - Mass: 10 kg

University of Maryland

RASC-AL Competition Cocoa Beach, FL May 2005

Communications

- SPRITE capable of continuous communication with the Earth using a high gain antenna when stopped
- Communiqués destined for lunar base are relayed by Earth (or satellite at L2 if on far side of moon) due to limited line of sight
- SPRITE also capable of HDTV transmission to Earth when stopped

	SPRITE to	SPRITE to EVA
Antenna Type	Faiin/Base Fligh gain	Low gain
Band	Ка	UHF
Frequency	20 – 25 GHz	0.9 GHz
Power Output	10 W	20 W
Data Rate	50 Mb/s	50 Mb/s
Link Margin	3 – 6 dB	4 dB

University of Maryland RASC-AL Competition Cocoa Beach, FL May 2005

Surface Navigation Architecture

- Star tracker position estimate used as starting point
- Landmark Navigation uses day/night panoramic CCD camera to build digital elevation map (DEM) of horizon
- DEM is correlated with topography maps from Lunar Reconnaissance Orbiter

http://www-2.cs.cmu.edu/afs/cs/project/viper/www/Results/

	Viper 1997	SPRITE 2016
Accuracy	180 m	100 – 180 m
Pre Processed Storage Region	100 MB (10 x 20 km)	500 MB (10 x 100 km)
Time	10 s	10 – 15 s
Night range	N/A	~ .8 km*

* Based off of generation 4 night vision technology

University of Maryland

RASC-AL Competition Cocoa Beach, FL May 2005

Obstacle Detection/Avoidance

- Detects, characterizes, and tracks obstacles from 0 m - 50 m
- 3 stereo camera pairs (1 pair night-vision)
 - 6 m 50 m coverage
 - 2 x 200 W headlights for night operations
- 2 3D laser scanners
 - 0.5 m 6 m coverage
- Autonomous driving computer
 - 0.5 second path generation around local obstacles

University of Maryland

RASC-AL Competition Cocoa Beach, FL May 2005

Computers, Networking, and Data Storage

- Primary network ~ 57.6 Mbps
- Vehicle/Crew health ~ 1 kbps
- Data Storage ~ 25 GB capacity
- 1 RAD6000 general purpose computer
 - 33 MHz, 35 MIPS, 128 MB RAM
- 2 RAD750 navigation computers
 - Command drive-by-wire system
 - Process landmark navigation
 - Process crew route planning, update stored maps
- 1 autonomous driving computer (ADC)
 - Maxwell Technologies SCS750 (space-qualified super computer)
 - 800 MHz, 1800 MIPS, 256 MB RAM
- 1 RAD750 obstacle processing computer for laser rangefinders
- 2 Notebook Computers

University of Maryland

RASC-AL Competition Cocoa Beach, FL May 2005

Typical Sortie

Nominal sortie includes

- Day 1: 100 km traverse
- Days 2 6: EVA, 10 km traverse
- Day 7: 100 km traverse back to base
- Each traverse segment may include up to 1000 m of ascent/descent

Time Time				
Segment	Activity	(hrs)		
00:00 - 06:00	Sleep	6		
06:00 - 06:30	Hygiene	0.5		
06:30 - 07:15	Breakfast	0.75		
07:15 - 07:45	EVA Prep	0.5		
07:45 - 15:45	EVA	8		
15:45 - 16:15	Doff suit	0.5		
16:15 - 16:45	Hygiene	0.5		
16:45 - 17:00	Review of EVA Activities	0.25		
17:00 - 17:45	Dinner	0.75		
17:45 - 18:45	Reposition	1		
18:45 - 20:45	Complete Earlier Notes	2		
20:45 - 21:45	Personal Time	1		
21:45 - 22:00	Hygiene	0.25		
22:00 - 00:00	Sleep	2		

Sample Day Schodule

University of Maryland

RASC-AL Competition Cocoa Beach, FL May 2005

Base Operations

- Base provides all consumables and some scientific instruments
- Umbilical provides 2.5 kW of power for life support and avionics
- Upon arrival at base, the following components will be assembled and/or attached:
 - Emergency Return Vehicle (ERV)
 - Robotic arm
 - Scientific instruments
 - Spacesuits

Supplies Prov	nded by Base
Item	Mass (kg present on sortie)
Hydrogen	60
Oxygen	500
Nitrogen	1
Food	40
Initial Water Supply	12.5
CO ₂	10
HEPA filters	19
Lithium Hydroxide	60
Emergency Batteries	20
Science	332
ERV Batteries	49
ERV Consumables	22
TOTAL	1126

University of Maryland

RASC-AL Competition Cocoa Beach, FL May 2005

Turnaround Activities

Maintenance and repair

- Inspect all major rover components for damage
- Repair or install replacements if necessary
- All external repairs done on EVA
- Consumable replenishment
- Refit all crew consumables for a nominal sortie
- Refuel cryogenic tanks

Science activities

- Transfer of return samples to base
- Scientific experimentation
- Data analysis
- Load science packages for next sortie
- Mission planning
- Plan next sites to visit
- Science experiments vary with sortie
- Switch out EVA suits if there is a crew change

RASC-AL Competition Cocoa Beach, FL May 2005

University of Maryland

Robotic Manipulator

- Provides access to environment/SPRITE exterior without EVA
 - Uses for science, visual inspection/repair, hatch deployment
- Changeable end effectors: gripper, rock abrasion tool, others as needed
- Capable of direct and supervisory control
- Collision avoidance by camera

SPRITE Science

Science Capabilities

- SPRITE's science investigations will include:
 - Seismometry
 - Heat flow
 - Magnetometry
 - Atmospheric monitoring
 - Sample collection
- Each EVA will match or surpass the scientific return of a typical Apollo J-Class EVA
- Nominal sortie will collect 100 kg of samples for further analysis at base

Science Instruments

- Sample collection tools and containers
- Mini-TES mounted to instrument mast to map local mineral distribution
- SPRITE Lunar Surface Experiment Package (SLSEP)
 - RTG power source
 - Experiments communicate with Earth for several years
 - Mass = 25 kg
- Astronauts will create HDTV and digital photographic records for documentation purposes

University of Maryland

RASC-AL Competition Cocoa Beach, FL May 2005

Emergency Return Vehicle (ERV)

.6 m

0.8 m

- ERV is attached to the side of SPRITE
- Wheels are removed
- Forward and rear chassis sections fold
- inward
- Chairs collapse

Flying Locator and Assistance Requesting Equipment

- Emergency communications package to provide direct over-the-horizon communication with the base
- Provides 9 minutes of communication with the base
- Two canister launched solid rockets propel a radio relay package vertically to within view of the base and SPRITE
- Crew can activate FLARE from inside cabin or EVA
- Operates one voice relay channel and one data channel Data channel loops critical information:
 - Distress code
 - Timestamp
 - Last position update
 - Life support sensor fingerprint
- Receipt of FLARE distress code immediately triggers an alarm at the base, both channels are recorded at the base
- Each unit weighs 12 kg

University of Maryland

RASC-AL Competition Cocoa Beach, FL May 2005

Contingency Operations

From the Earth to the Moon

Credit AGI Viewer (STK Software)

Principle Requirements

- Launch on a Delta-IV Heavy
- Land accurately anywhere on the moon

Translunar Injection

- Translunar insertion payload of 9960 kg
- Trajectory optimization performed by NASA

Operational In-Transit Systems

- Active cryogenic cooling
- GN&C avionics
- RCS attitude control
- Telemetry and monitoring systems

University of Maryland RASC-AL Competition Cocoa Beach, FL May 2005

Selenocentric Maneuvers

BURN / MANEUVER	SYSTEM	ΔV [km/s]	M _P [kg]	ΔT [s]
Lunar Orbit Insertion	Retro	.816	1682	101
Descent Orbit Insertion	RCS	.022	63	450
Propulsive Descent Retro Phase	Retro	1.71	2652	160
Propulsive Descent Landing Phase	Landing	.099	172	76

University of Maryland RASC-AL Competition Cocoa Beach, FL May 2005

Landed Mass: 4250 kg (Includes landing craft dry mass)

University of Maryland

RASC-AL Competition Cocoa Beach, FL May 2005

Propulsion Systems

Retro Stage

- RL-10A-3A engine
 - 73400 N Thrust, 449 s ISP
 - 4° capable gimble
 - Restartable
- 4 RCS monopropellant thrusters
 - Attitude control and course corrections
 - Requires 30 kg of Hydrazine

Landing Stage

- 4 Multi-Use thrusters
 - 5640 N Thrust, 292 s ISP
 - 2 diagonally-opposed MUTs can be lost without a landing failure
- 16 RCS bipropellant thrusters
- Stage fueled by MON/UDMH

University of Maryland

RASC-AL Competition Cocoa Beach, FL May 2005

Landing Structure

- Landing legs 1.26 m long located at each corner on a 45° angle.
- 108 kg (4 legs) Al 7075-T6
- Minimizes KE transferred to SPRITE
- Deployable L-beam ramps 1.8 m long aligned with wheels of SPRITE
- 97 kg (4 ramps) Al 7075-T6

Descent and Landing GNC

- Critical GNC Hardware ٠
 - Inertial Measurement Units
 - Fiber optic gyro based
 - Senses pitch, yaw, roll & acceleration rates
 - Star Trackers
 - Detects star patterns & magnitudes
 - Reference for IMU
 - Guidance Computers
 - Calculates position, velocity, acceleration, and attitude

- Landing Control System •
 - 3 Microwave Scan Beam Landing Systems
 - · Finds slant range, azimuth, and elevation relative to moon base
 - Data used to compute steering commands
 - 2 radar altimeters
 - 2 Earth-moon limb sensors
 - Additional attitude data for navigation filter
 - Guidance Computer checks nominal and actual approach velocities to ensure soft landing
- Hovers 200 m from surface and image landing area from two positions 70 m apart to build a stereo image (< 0.2 m error)
- After processing, calibrate lander position with an absolute distance to ground measurement and continue descent

RASC-AL Competition Cocoa Beach, FL May 2005

Launch Support Structure

Interface	Load	Mass	MOS	SF	Failure
Rover Support	450 MPa	21.3 kg	0.3	2	Local Buckling
LH2/Rover	700 MPa	98.8 kg	0.0	2	Local Buckling
LH2/LOX	300 MPa	158 kg	0.0	2	Local Buckling
LOX/Retro	700 MPa	53.5 kg	0.6	2	Local Buckling

- Designed to conform with structure to minimize volume and mass
- Supports mass of vehicle during launch Analyzed using FEM
- Constrained on top
- 6 g axial, 2.5 g lateral load

Delta IV Isogrid Fairing

University of Maryland RASC-AL Competition Cocoa Beach, FL May 2005

Program Timeline and Costs

Timeline

- Development and Production to take place from 2005-2016
- Beginning in 2014, coordination with Boeing for integration of SPRITE into Delta-IV Heavy must begin
- SPRITE ready for launch on January 1, 2016
- Program will operate on 3 month life-cycles

Total Cost: \$2.87B

Costs

- Costs estimated using NASA cost models
 - JSC Advanced Missions
 - JSC Spacecraft model
 - GSFC vehicle and component level CER's
- Robotic Arm is exception
 - Cost estimated based upon relatively similar robotic arm cost

Item	Cost (\$M 2005)
SPRITE	2270
Landing Structure	36
ERV	11
Robotic Arm	300
Retro Engine	5
Launch	250

University of Maryland

RASC-AL Competition Cocoa Beach, FL May 2005

Community Outreach

- Students, faculty, and members of the local aerospace community watched and asked questions at SPRITE's:
 - Preliminary Design Review
 - Critical Design Review
- Maryland Day
 - On April 30th, the University of Maryland allowed thousands of guests to explore campus
 - SPRITE team manned table in the Space Systems Laboratory showcasing the project and answering questions

University of Maryland RASC-AL Competition Cocoa Beach, FL May 2005

